home *** CD-ROM | disk | FTP | other *** search
-
-
-
- DDDDTTTTRRRRSSSSYYYYLLLL((((3333SSSS)))) DDDDTTTTRRRRSSSSYYYYLLLL((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- DTRSYL - solve the real Sylvester matrix equation
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
- SCALE, INFO )
-
- CHARACTER TRANA, TRANB
-
- INTEGER INFO, ISGN, LDA, LDB, LDC, M, N
-
- DOUBLE PRECISION SCALE
-
- DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- DTRSYL solves the real Sylvester matrix equation:
- op(A)*X + X*op(B) = scale*C or
- op(A)*X - X*op(B) = scale*C,
-
- where op(A) = A or A**T, and A and B are both upper quasi- triangular. A
- is M-by-M and B is N-by-N; the right hand side C and the solution X are
- M-by-N; and scale is an output scale factor, set <= 1 to avoid overflow
- in X.
-
- A and B must be in Schur canonical form (as returned by DHSEQR), that is,
- block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-
- by-2 diagonal block has its diagonal elements equal and its off-diagonal
- elements of opposite sign.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- TRANA (input) CHARACTER*1
- Specifies the option op(A):
- = 'N': op(A) = A (No transpose)
- = 'T': op(A) = A**T (Transpose)
- = 'C': op(A) = A**H (Conjugate transpose = Transpose)
-
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- DDDDTTTTRRRRSSSSYYYYLLLL((((3333SSSS)))) DDDDTTTTRRRRSSSSYYYYLLLL((((3333SSSS))))
-
-
-
- TRANB (input) CHARACTER*1
- Specifies the option op(B):
- = 'N': op(B) = B (No transpose)
- = 'T': op(B) = B**T (Transpose)
- = 'C': op(B) = B**H (Conjugate transpose = Transpose)
-
- ISGN (input) INTEGER
- Specifies the sign in the equation:
- = +1: solve op(A)*X + X*op(B) = scale*C
- = -1: solve op(A)*X - X*op(B) = scale*C
-
- M (input) INTEGER
- The order of the matrix A, and the number of rows in the matrices
- X and C. M >= 0.
-
- N (input) INTEGER
- The order of the matrix B, and the number of columns in the
- matrices X and C. N >= 0.
-
- A (input) DOUBLE PRECISION array, dimension (LDA,M)
- The upper quasi-triangular matrix A, in Schur canonical form.
-
- LDA (input) INTEGER
- The leading dimension of the array A. LDA >= max(1,M).
-
- B (input) DOUBLE PRECISION array, dimension (LDB,N)
- The upper quasi-triangular matrix B, in Schur canonical form.
-
- LDB (input) INTEGER
- The leading dimension of the array B. LDB >= max(1,N).
-
- C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
- On entry, the M-by-N right hand side matrix C. On exit, C is
- overwritten by the solution matrix X.
-
- LDC (input) INTEGER
- The leading dimension of the array C. LDC >= max(1,M)
-
- SCALE (output) DOUBLE PRECISION
- The scale factor, scale, set <= 1 to avoid overflow in X.
-
- INFO (output) INTEGER
- = 0: successful exit
- < 0: if INFO = -i, the i-th argument had an illegal value
- = 1: A and B have common or very close eigenvalues; perturbed
- values were used to solve the equation (but the matrices A and B
- are unchanged).
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- DDDDTTTTRRRRSSSSYYYYLLLL((((3333SSSS)))) DDDDTTTTRRRRSSSSYYYYLLLL((((3333SSSS))))
-
-
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-